Hero image

524Uploads

221k+Views

119k+Downloads

Tool holder testing
IETEducationIETEducation

Tool holder testing

(0)
Students compete to make the strongest electromagnetic tool holder for a surgeons robotic arm. A practical activity where students work in teams to build their own electromagnet and use this to make an ‘arm’ with an electromagnetic gripper at one end. They are given some basic parts to start and a budget - a sum of ‘money’ or tokens with which to buy the other parts. Once their arm and gripper are complete they have 30 seconds to move as many paper clips from one pile to another as possible. The team moving the most paper clips in the allotted time is the winner. This activity makes students consider the factors involved in electromagnet strength and design. Download the activity sheets for free! And please do share your classroom learning highlights with us @IETeducation
Maths behind a heating system
IETEducationIETEducation

Maths behind a heating system

(0)
This is a practical exercise in which students will utilise their mathematical knowledge to solve problems and apply formulas. Specifically, they will compute the length of pipes necessary for an underfloor heating system. They will also write a brief explanation of how a sustainable underfloor heating system operates. This can be effectively taught within mathematics or within design and technology, as part of resistant materials or product design. How long will this activity take? This activity will take approximately 60-90 minutes to complete Tools/resources required Green School film Projector/Whiteboard Measuring equipment e.g. tape measures or trundle wheels Squared paper The engineering context Sustainability is a key consideration in modern engineering practices. As the world faces pressing environmental challenges such as climate change and resource depletion, engineers must design solutions that not only meet the needs of society, but also minimise their impact on the planet. Sustainable engineering involves developing systems, products and processes that are socially, economically, and environmentally responsible. This can include reducing carbon emissions, optimising energy use, minimising waste, conserving natural resources, and designing products that can be recycled or repurposed at the end of their lifecycle. Suggested learning outcomes By the end of this activity students will be able to describe the operation of a sustainable underfloor heating system and they will be able to create and apply mathematical formulae in a practical context. Download the free Maths Behind a Heating System activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Water treatment systems
IETEducationIETEducation

Water treatment systems

(0)
Investigate the salinity of different water samples Water is crucial to human life, but it can also be a killer. Drinking or cooking water contaminated with micro-organisms or chemicals is a leading cause of disease and death across the world. Poor facilities for the disposal of sewage and other waste water can quickly lead to the spread of dangerous diseases. Activity info, teachers’ notes and curriculum links In this practical activity students investigate the salinity of three different water samples using a multimeter. Students first calibrate their salination probe and test the salinity of their solutions. Students can be asked to suggest how errors might have appeared in their results and what could be done to minimise or eliminate them. This activity can be used as an extension to the ‘Filtering water’ activity. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Robot swarms
IETEducationIETEducation

Robot swarms

(0)
Write a set of rules for governing the behaviour of a robot swarm used in search and rescue operations The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other. Together with related activities, this resource allows students to investigate the wide range of sophisticated imaging technology available in modern hospitals, and to explore the latest ideas in search-and-rescue robotics. Activity info, teachers’ notes and curriculum links This activity gets students to work in small teams to create a set of simple rules which can be used to control a robot swarm designed to help in search-and-rescue-type scenarios such as earthquakes. The ‘Robot Swarms’ student brief sets the scene. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Medical imaging
IETEducationIETEducation

Medical imaging

(1)
A closer look at the techniques used to scan brain tissue The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other. Together with related activities, this resource allows students to investigate the wide range of sophisticated imaging technology available in modern hospitals, and to explore the latest ideas in search-and-rescue robotics. Activity info, teachers’ notes and curriculum links An engaging starter activity making use of the short film ‘Mind Mapping’ (see related resources section below) and encouraging students to think about new technologies and how difficult it is to predict their future development and application. Students consider how engineers have created different and safe techniques of scanning brain tissue. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Smart materials
IETEducationIETEducation

Smart materials

(0)
Identifying which materials might offer the best prospects for a financial investment In this activity, students will investigate the properties of different types of smart materials and decide which ones might offer the best prospects for financial investment. The development of new materials with incredible properties is changing the way we live. From 4K TVs to super light airliners, these materials have quickly found their way into the modern technology around us. One area where modern materials have made a huge impact is in the development of prosthetic devices. Some of these devices are beginning to outperform ‘natural’ body parts. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (DT) and science. Activity: Identifying which materials might offer the best prospects for a financial investment Learners will investigate the properties of different categories of smart materials and decide which kinds of materials might offer the best prospects for a financial investment. Students work in teams and present their results to the rest of the class. The activity offers strong opportunities for cross-curricular work with Enterprise. This activity can be extended with a related practical session ‘Smart and modern materials’, where students identify a material from its particular properties. The engineering context Smart materials are often at the forefront of engineering and technological innovation with engineers using them to create products that are more durable, adaptable and more efficient to manufacture. From building structures that can withstand earthquakes to designing prosthetics that outperform human body parts, the applications of smart materials are vast (and continually expanding!). By learning about smart materials, students will get an insight into how these modern materials are made, used and how they can be applied to real world issues such as improving people’s lives. Suggested learning outcomes This lesson will teach students how to recall a variety of different examples of smart materials and describe how their properties react to changes in their environment. They’ll also be able to investigate smart materials on both a theoretical and practical level, understanding their applications as well as their investment potential. Download our activity sheet for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download (including film clips!), and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation
Microwaves and health
IETEducationIETEducation

Microwaves and health

(1)
Explore the risks associated with exposure to microwaves Living in a highly technological world, where access to information and entertainment is at our fingertips, the Inform and Entertain Me topic is a gateway to engage and introduce students to the principles and technology that form the basis for communication devices that are used in our everyday lives. Activity info, teachers’ notes and curriculum links This engaging activity allows students to explore the hazards and risks associated with exposure to microwaves. A microwave monitor is used to measure the microwave radiation from a microwave oven and a working mobile phone at a range of distances. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Mobile phones and health
IETEducationIETEducation

Mobile phones and health

(0)
Investigate the potential effects of mobile phones on our health The ‘Time for a game’ scheme of work provides an electronics systems context for students to explore infrared technologies. Activity info, teachers’ notes and curriculum links An engaging activity in which students will investigate the potential effects to health of the use of mobile phones and their transmitters, which use radio waves and microwaves to transmit information. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Science behind the materials
IETEducationIETEducation

Science behind the materials

(1)
Explore the properties of solids, liquids and gases In this unit, students will develop their understanding of the properties of the three states of matter. They will have the opportunity to experiment with a range of different substances that do not fit neatly into the traditional states of matter model. Activity info, teachers’ notes and curriculum links An engaging activity where students will explore materials to develop an understanding of why they behave the way they do. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Make a night-light circuit
IETEducationIETEducation

Make a night-light circuit

(0)
Design and make a solar powered night-light circuit In this engaging and practical STEM activity, designed for secondary school students, learners will investigate the photovoltaic effect by designing and making a solar power night-light circuit. The ‘Photovoltaic cells’ scheme of work involves investigating how photovoltaic cells are used and then using this technology to make a series of electronic circuits of increasing complexity. This could form the basis of a design and make activity in Design and Technology, with cross-curricular links with Science. This could be used as a short design and make project in Electronics or Product Design within Design and Technology. It could be extended into a longer project using the ‘Design Guide (handout)’ to provide a structure for the sequence of tasks to be carried out. Students should be divided into pairs or small teams. Their design brief is to design and manufacture a prototype solar powered night-light. The prototype should be powered by solar energy, produce no waste by-product with normal use, provide an appropriate illumination for a task (to be identified), illuminate automatically when the light level drops (below an identified level) and it should be manufactured from reused materials, where possible. Tools/resources required Access to appropriate CAD software for circuit modelling and development Modular electronics kits or prototype boards (breadboards), as appropriate Transistor sensor circuit help (handout) Design Guide (handout) A range of components to manufacture the circuits Suggested learning outcomes By the end of this activity students will have an understanding of how photovoltaic cells work, how they can be used and the impact of using photovoltaic cells in aesthetic, economic, and environmental issues. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Investigate the photovoltaic effect
IETEducationIETEducation

Investigate the photovoltaic effect

(0)
Learn how photovoltaic cells work and investigate the photovoltaic effect In this engaging STEM activity, designed for secondary school students, learners will discover how photovoltaic cells work, how they differ from solar thermal cells, and they will investigate the photovoltaic effect. The ‘Photovoltaic cells’ scheme of work involves investigating how photovoltaic cells are used and then using this technology to make a series of electronic circuits of increasing complexity. This could form the basis of a design and make activity in Design and Technology, with cross-curricular links with Science. This is a short activity which involves investigating the photovoltaic effect. It could be used as a starter activity in Electronics or Product Design within Design and Technology, or to provide students with extended background information during the design and make project. It could also be used as a starter in Science. Students will be given the ‘What is a photovoltaic cell’ handout. They should consider the following questions: How do photovoltaic cells differ from solar thermal cells? What commonly available products use photovoltaic cells? What are the advantages and disadvantages of photovoltaic cells? What factors would affect the positioning of a photovoltaic cell? Tools/resources required Internet access Ideally, small operational models of solar thermal and photovoltaic cells that the students can handle Suggested learning outcomes By the end of this activity students will be able to list the two types of solar panel and give examples of how they are used, and they will be able to explain how photovoltaic cells work. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Materials and design
IETEducationIETEducation

Materials and design

(0)
Design a sporting outfit that is fit for purpose This unit focuses upon how materials have been specifically engineered in order to provide the requisite qualities and characteristics. It builds on the ‘science behind the material’ scheme of work, developing the students’ understanding of particle states and motion in relation to materials used in engineering/product design. It allows the students to explore a range of engineered and smart materials, identifying why they are ‘fit for purpose’ and how they have been engineered to achieve this purpose. Activity info, teachers’ notes and curriculum links An engaging activity where students will design an outfit that could be worn whilst participating in a sport. With a strong emphasis on developing creative thinking when generating ideas, this activity requires students to be creative when applying knowledge and understanding in science to a design and technology context. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Inputs and outputs of design
IETEducationIETEducation

Inputs and outputs of design

(1)
Developing an understanding of the terms ‘system’, ‘input’, ‘process’, ‘output’ and ‘signal’ This activity aims to develop students’ understanding of key terms such as ‘system’, ‘input’, ‘process’, ‘output’, and ‘signal’, fostering critical thinking and independent investigation skills. Our ‘Time for a Game’ scheme of work offers an engaging electronics context, allowing students to delve into infrared technologies as seen in popular devices like the Nintendo Wii. This lesson plan helps leaners understand the core components that make up the devices they use every day. By learning about systems, inputs, processes, outputs, and signals, they will begin to see the world around them in a new light. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within maths, science and design and technology (DT). Activity: Developing an understanding of the terms ‘system’, ‘input’, ‘process’, ‘output’ and ‘signal’ In this activity, students will work in pairs to define key terms and identify these features in common products using the ‘Inputs and Outputs of Design’ presentation. They will explore the concept of a system as a collection of parts designed to carry out a function, and learn how inputs activate the system, while outputs are activated by the process. They will also delve into the role of signals in transmitting information between different system blocks. To reinforce this learning, the Wii film will provide a practical example of these concepts at work. The engineering context This lesson plan provides an engaging introduction to engineering principles, as students learn about the components that make up the systems around them. Understanding the inputs, processes, outputs, and signals of a system is foundational to engineering and design. This activity will inspire students to consider a career in engineering, as they gain insights into the creativity, critical thinking, and problem-solving involved in designing and understanding complex systems. Suggested learning outcomes Upon completion of this activity, students will have a clear understanding of the difference between input, process, and output in a system and be able to define these terms. They’ll be able to identify these features in common products, enhancing their understanding of the devices and technologies they interact with daily. Download our activity sheet for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download (including film clips!), and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation
Identifying sensors
IETEducationIETEducation

Identifying sensors

(0)
Identify which components can be used as electronic sensors The role of smart sensors in our everyday lives is becoming increasingly fundamental. The Smart Sensor Communications topic focuses on what smart sensors are, how they are being used today and how they can be innovative in the future. In this activity, the focus is on how sensors can be used to detect changes in the environment and can be used as part of a monitoring or control system. Activity info, teachers’ notes and curriculum links An engaging starter activity introducing students to the devices that can be used as part of an electrical system to monitor changes, and showing them that the characteristics of a device can vary according to changes in the environment. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Humans vs. robots
IETEducationIETEducation

Humans vs. robots

(0)
Consider ethical and moral issues around new technology This engaging activity allows students to consider the social, ethical and moral issues associated with the development of new technology. The activity offers strong opportunities for cross-curricular work with PSHE, PSE, PSD. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within science and design and technology (DT). Activity: Consider ethical and moral issues around new technology Students will be divided into groups and given a scenario: the creation of the world’s first entirely autonomous robot surgeon. Some groups, representing the engineers, scientists, and doctors who designed the robot, will argue for the continuation of the project. Other groups, representing patients’ groups and doctors’ unions, will argue against further development due to perceived risks. Using a newspaper article and worksheet as guides, students will formulate robust arguments for their assigned viewpoints. They’ll then pair up and debate the issue, striving to reach a mutually agreed way forward. The engineering context This activity demonstrates how engineers must grapple with not only the technical challenges of designing new technology but also its societal implications. It highlights the importance of considering varying viewpoints and ethical concerns when developing new technologies. Suggested learning outcomes Through this activity, students will gain a deep understanding of what remote surgery entails and the social, ethical, and moral implications of such technological advances. They’ll also learn to appreciate that different groups may have varying perspectives on scientific and technological progress. By engaging in structured debates, students will enhance their analytical skills, learn to articulate their viewpoints persuasively, and develop the ability to negotiate and compromise. Download our activity sheet for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download (including film clips!), and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation
How technology affects us classroom debate
IETEducationIETEducation

How technology affects us classroom debate

(0)
Argue for and against different technological products The ‘Who’s the winner’ scheme of work provides students with an opportunity to collect data which they can use as evidence to debate whether people should be encouraged to engage in computer-based sport activities. This activity provides a context for the scheme, by focusing on the wider issues relating to society and health. It helps set the scene for the ‘question of sport’ unit of activities by providing a ‘big picture’ in relation to the connection between society and health and the development of new technologies. Activity info, teachers’ notes and curriculum links An engaging activity which allows students to explore social, ethical, economic and health issues relating to the Nintendo Wii and present their findings in a persuasive, coherent and focussed argument. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Global surgery challenge
IETEducationIETEducation

Global surgery challenge

(1)
Investigate and understand the technology that is required for remote surgery A session focused on Internet research and presentation skills. Students work in teams to investigate the technology that is required for remote surgery and discuss the advantages, disadvantages and ethical issues of such procedures. Students are given the example of a patient who, after suffering a series of heart attacks is about to undergo heart surgery in a hospital where a new pacemaker will be inserted using remote surgery. They are responsible for reassuring the patient ‘Luigi’ about the procedure and the aftercare. Download the free activity sheet! And please do share your classroom learning highlights with us @IETeducation
Testing water filtration systems
IETEducationIETEducation

Testing water filtration systems

(0)
Design an experiment to test advertisement claims on water filtration equipment Water is crucial to human life, but it can also be a killer. Water contaminated with micro-organisms or chemicals, which is then used for drinking or cooking, is a leading cause of disease and death across the world. Poor facilities for the disposal of sewage and other waste water can quickly lead to the spread of dangerous diseases. Activity info, teachers’ notes and curriculum links This activity gets students to design an experiment or experiments which will test the claims of companies producing various types of domestic water filtration equipment. It can take 60 - 90 minutes to complete depending on the number of adverts chosen from the ‘Product advertisements’ student handout, and if the related short film is shown as an introduction to the session. You can stream and download this film for free by clicking on the link in the related resources section below. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Materials: Fit for purpose
IETEducationIETEducation

Materials: Fit for purpose

(0)
Explore a range of engineered and smart materials The Materials fit for purpose activity comprises a series of short, focused tasks with a strong emphasis on developing creative thinking. Students explore a range of smart materials to identify why they have been specifically designed and engineered to provide the requisite properties and characteristics for a given purpose. This activity requires students to be creative when applying knowledge and understanding in science to a design and technology context. This has a predominantly design and technology, and engineering focus, although the activities could be used in science, either as starters or extension activities. Tools/resources required Projector/Whiteboard The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your classroom learning highlights with us @IETeducation
Design an information system
IETEducationIETEducation

Design an information system

(1)
Design an information display system for disabled people The importance of smart sensors in our daily routines is growing significantly. The Smart Sensor Communications topic focuses on what smart sensors are, how they are being used today and how they can be innovative in the future. This engaging and thought-provoking activity introduces secondary school students to methods of looking at specific problems. To use the research and knowledge gained to find solutions to a problem, and to allow students to explore these solutions, however improbable they may seem. Students should design an information display system for use in their school which can be used by those with disabilities. For an example of a system diagram use the ‘Systems diagram’ handout. Students will communicate their solutions using annotated sketches. They should try and identify the Inputs and Outputs that are necessary. Furnish the students with both information sheets, and explain that any solution should be considered, no matter how crazy or improbable it seems. They will need to produce annotated sketches of a number of solutions – emphasise that these need to be clear so that others can understand. For each solution, a block diagram should be produced showing the Input-Process-Output for the design. How long will this activity take? This activity will take approximately 45 minutes to complete. Tools/resources required Woollen gloves Blindfolds Ear defenders Graphical equipment The engineering context Engineers play a crucial role in the development and implementation of smart sensors in various industries. Smart sensors are sensors that can process and analyse data, allowing them to make decisions without human intervention. Engineers are responsible for designing and integrating these sensors into systems, ensuring that they function correctly and provide accurate and reliable data. They also play a vital role in the development of innovative ways to use smart sensors to improve various processes, including healthcare, manufacturing, transportation, and many others. With the increasing demand for smarter and more efficient systems, engineers will continue to play a critical role in the advancement of smart sensor technology. Suggested learning outcomes By the end of this activity students will be able to identify problems for a specific task, use various methods to research a problem and explore solutions. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation